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Multiphoton microscopy is the enabling tool for biomedical research, but the aberrations of biological tissues have limited
its imaging performance. Adaptive optics (AO) has been developed to partially overcome aberration to restore imaging
performance. For indirect AO, algorithm is the key to its successful implementation. Here, based on the fact that indirect
AO has an analogy to the black-box optimization problem, we successfully apply the covariance matrix adaptation evolution
strategy (CMA-ES) used in the latter, to indirect AO in multiphoton microscopy (MPM). Compared with the traditional genetic
algorithm (GA), our algorithm has a greater improvement in convergence speed and convergence accuracy, which provides
the possibility of realizing real-time dynamic aberration correction for deep in vivo biological tissues.
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1. Introduction

In recent years, multiphotonmicroscopy (MPM) hasmade great
progress in imaging biological tissues, especially brain tissue,
due to its advantages of noninvasiveness and deep-tissue pen-
etration[1–5]. Among the various MPM modalities using differ-
ent excitation wavelengths, 3-photon microscopy (3PM) excited
at the 1700-nm window is intriguing in that it enables the largest
brain imaging depth in vivo so far[5]. However, optical aberra-
tion arising from the brain tissue distorts the focus, which fur-
ther limits maximum imaging depth.
In order to overcome the optical aberration, adaptive optics

(AO) has been introduced into MPM[6–8]. There are two types
of AO, one of which requires direct wavefront detection with a
wavefront sensor (direct AO), while the other type does not
require a wavefront sensor and calculates the wavefront by iter-
ative algorithms (indirect AO). Compared with direct AO, indi-
rect AO is easier and cheaper to implement. However, indirect
AO requires algorithmic iterations to calculate the wavefront
and compensate accordingly, since no wavefront sensor is
required, and it therefore requires much more time and cost
than direct AO. Many algorithms have been developed for indi-
rect AO, such as the hill climbing algorithm[9], the genetic algo-
rithm (GA)[10], the particle swarm algorithm (PSO)[11], and the
simulated annealing algorithm (SA)[12]. These algorithms sig-
nificantly accelerate the process of indirect AO, but the speed

of optimization is still not high enough to deal with high
dynamic media like in vivo biological tissue. In addition, these
algorithms involve stochastic variables in the optimization
and are sensitive to the initial condition and local optimum[13],
which may affect the resultant aberration correction. Therefore,
it is desirable to develop a new optimization method with a high
speed and strong capability of global search.
We have found that indirect AO optimization is quite similar

to the black-box optimization problem[14], so we expect that the
algorithm applicable to black-box optimization can be directly
applied to indirect AO. Here, we propose a new approach to
indirect AO based on an algorithm called covariance matrix
adaptation evolution strategy (CMA-ES)[15]. The CMA-ES is
a widely used algorithm for black-box optimization problems
and has proved to be very effective[16]. Through both numerical
simulation and experiment, we show that the CMA-ES has a
faster convergence speed and higher accuracy than the GA in
indirect AO, which provides a new approach for fast in vivo
aberration correction and provides the possibility of further
improving the maximum multi-photon imaging depth.

2. Methods

2.1. Basic principle of CMA-ES

The CMA-ES is an evolutionary algorithm based on Gaussian
mutation and deterministic selection. Evolutionary strategies
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are stochastic search methods inspired by the principles of bio-
logical evolution typically using a multivariate normal mutation
distribution. The CMA-ES is considered to be one of the best
choices against ill-conditioned, non-convex black-box optimi-
zation problems in the continuous domain[16]. The core idea
of the CMA-ES is to deal with the dependence between variables
and scaling by adjusting the covariancematrix in the normal dis-
tribution[15]. The solution of the algorithm is updated by

x�g�1�
k ∼m�g� � σ�g�N �0,C�g��, k = 1, : : : , λ: (1)

x�g�1�
k denotes the kth solution of the �g � 1�th generation,

the symbol ∼ represents that the left and right parts of the sym-
bol are subject to the same distribution, and m�g� denotes the
mean value of the gth generation search distribution, which
can be updated by
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Xμ
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denotes the conjugate evolutionary path, cσ ≤ 1 denotes the
learning rate of σ, dσ is a constant approximately equal to 1,
and C�g� denotes the covariance matrix of the gth generation.
It can be updated by

C�g�1� = �1 − cμ�C�g�

� cμ
1

�σ�g��2
Xμ
i=1

wi�x�g�1�
i:λ −m�g���x�g�1�

i:λ −m�g��⊤, (6)

where cμ ≤ 1 denotes the learning rate of μ.
Similar to the GA, the dimensionality of the solution, the size

of the population, and the maximum number of iterations need

to be determined before starting the CMA-ES. Then, given the
initial search point and initialized parameters (C�0� = I and
p�0� = 0), the iterative computation is carried out and stops after
the maximum number of iterations is reached, and the result is
outputted.

2.2. Experimental setup

Our experimental setup (Fig. 1) is similar to that used in Ref. [4].
The 1680-nm soliton source was generated through the soliton
self-frequency shift, pumped by a 500-fs, 1550-nm femtosecond
laser (FLCPA-02CSZU, Calmar) at 1 MHz. A 44-cm photonic
crystal (PC) rod (SC-1500/100-Si-ROD, NKT Photonics) was
used to shift the soliton to 1680 nm. An f = 100 mm C-coated
achromatic lens (AC254-100-C-ML, Thorlabs) and an f =
75 mm C-coated achromatic lens (AC254-75-C-ML, Thorlabs)
were used to focus the pump laser into the PC rod and to colli-
mate the output solitons, respectively. The residual pump was
removed by a 1650-nm long-pass filter (customized 1650lpf,
Mei Zhou Yi Zhao Photonics Technology). The filtered solitons
were expanded by an f = 35 mm lens (AC254-35-C-ML,
Thorlabs) and an f = 150 mm lens (AC254-150-C-ML,
Thorlabs) to fill all the apertures of the deformable mirror
(DM97-15, Alpao). The solitons reflected by the deformable
mirror were condensed by an f = 500 mm lens (AC254-500-
C-ML, Thorlabs) and an f = 150 mm lens (AC254-150-C-
ML, Thorlabs), and then entered into the dual-axis galvo mirror
systems (GVS002, Thorlabs). After that the solitons were
expanded by an f = 50 mm scan lens (AC254-50-C-
ML, Thorlabs) and an f = 200 mm tube lens (AC508-200-
C-ML, Thorlabs). A water immersion objective lens
(XLPLN25XWMP2, NA = 1.05, Olympus) with 2-mm working
distance (WD) was used.
A GaAsP photomultiplier tube (PMT, PMT2102, Thorlabs)

with a 525/70-nm bandpass filter (ET525/70M-2p, Chroma)
was used to detect third harmonic generation (THG) signals
from the brain slice, and 3PF images of fluorescent beads were
acquired using a GaAsP PMT (H7422p-40, Hamamatsu) with a
630/92-nm bandpass filter (FF01-630/92-25, Semrock). Image
acquisition and processing were performed using ScanImage
(Vidrio Technology, Ashburn, Virginia) and ImageJ (NIH,
Bethesda, Maryland), respectively. During the iteration of the
adaptive algorithm, the acquisition speed was 0.49 ms/line with
a resultant frame rate of 16 frames/s for a pixel size of 128 × 128.
For tissue imaging, the acquisition speed was 2 ms/line with 2
averages, with a resultant frame rate of 0.5 frame/s for a pixel
size of 512 × 512.

2.3. Sample preparation

The fluorescent bead sample was prepared using 1 μm fluores-
cent beads (F13083, ThermoFisher) mixed with a 1.5% agarose
solution at a ratio of 1:500. The mice (Balb/c) were all from the
Guangdong Medical Laboratory Animal Center, between ages
six and eight weeks. The brain was removed after isoflurane
euthanasia and decapitation of the mouse. Then, it was rinsed
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with saline. Coronal cortical slices of 350 μm thick were cut in a
Vibratome (ZQP-86, Shanghai Zhixin Instrument Co., Ltd.) at
4°C in artificial cerebrospinal fluid (ACSF, PH 7.3, CZ0524,
Leagene). Animal procedures were reviewed and approved by
Shenzhen University.

3. Results and Discussion

3.1. Performance verification by numerical simulation

To verify the performance of indirect AO based on CMA-ES, we
first carried out a numerical simulation. Due to the correlation

Fig. 1. Experimental setup. L1, f = 100 mm lens; L2, f = 75 mm lens; LPF, 1650-nm long-pass filter; HWP, half-wave plate; PBS, polarization beam splitter cube; L3,
f = 35 mm lens; L4, f = 150 mm lens; L5, f = 500 mm lens; L6, f = 150 mm lens; DC, dichroic mirror; OL, objective lens; BPF, bandpass filter.

Fig. 2. Simulation process schematic. (a) The GA process schematic, and (b) the CMA-ES process schematic.
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Fig. 3. Comparison of the GA and the CMA-ES by numerical simulation. (a) The original aberrated wavefront (left), the wavefront corrected by GA (middle), and the
wavefront corrected by CMA-ES (right). (b) The iteration curve comparison.

Fig. 4. System aberration correction results. (a) The comparison of the fluorescent bead before and after corrections (left, without correction; middle, correction
by GA; right, correction by CMA-ES). (b) The axial resolution comparison. (c) The iteration curve comparison.
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between Zernike polynomials and aberrations[17], we chose to
model the wavefront aberration using the first 30 orders
Zernike polynomials, with the polynomial coefficients generated
randomly and subject to normal distribution. Next, we used the
coefficients of the Zernike polynomials as variables and the root
mean square (RMS) value of the optimized wavefront as feed-
back for iterative optimization with the GA and the CMA-ES,
respectively. The overall process is shown in Fig. 2. The popu-
lation size of both algorithms was 20, and themaximum number
of iterations was 100, where the crossover rate andmutation rate
of the GA were 0.8 and 0.2, respectively, and the σ of the CMA-
ES was π=10.
As shown in Fig. 3(a), the initial wavefront RMS value is

5.4821 μm, and the wavefront RMS value is reduced to
1.4700 μm after the GA optimization. After the CMA-ES opti-
mization, the wavefront RMS value is reduced to 0.0628 μm,
which is nearly 20 times lower than the RMS value of the wave-
front optimized by the GA. This indicates that the initial distor-
tion wavefront is closer to the ideal plane wavefront after the
CMA-ES optimization than after the GA optimization, and
the iteration curve in Fig. 3(b) also shows that the CMA-ES
has faster convergence speed and higher accuracy than the GA.
As can be seen from the iteration curve, the wavefront RMS
value has been optimized to about 1.5 μm after 30 iterations

of the CMA-ES, while the GA takes a full 100 iterations to
achieve nearly the same result.

3.2. System aberration correction

Next, we performed a system aberration correction due to the
microscope. We select the first 30 Zernike polynomial coeffi-
cients (except for the tip, tilt) as variables for optimization.
The approach taken is similar to the simulation experiment,
except that the objective function value is changed from the
wavefront RMS to the fluorescence intensity. The results are
shown in Fig. 4. In the 3PF image of a fluorescent bead
[Fig. 4(a)], we can see that after correction by the GA, the fluo-
rescence intensity of the bead has been enhanced, so the axial
resolution is improved. After correction by the CMA-ES, the
fluorescence intensity is further enhanced compared to that after
the GA correction. This improvement in fluorescence intensity
is due to the improvement on axial resolution. We measured the
full-width at half-maximum (FWHM) of the fluorescence on the
z-axis and calculated the point spread function (PSF) of the
z-axis from the following equation:

PSFz =
�����������������������������
FWHM2 − R2

p
, �7�

Fig. 5. Brain slice aberration correction result. (a) The Brain slice THG image (left, without correction; middle, correction by GA; right, correction by CMA-ES). (b) The
line profile of the underlined THG signal in (a). (c) The comparison of the iteration curves.
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where R denotes the diameter of fluorescent beads. The FWHM
without correction, the FWHM after the GA correction, and the
FWHM after the CMA-ES correction are 4.17 μm, 4.00 μm, and
3.66 μm, respectively. Therefore, the calculated z-axis PSFs are
4.05 μm, 3.87 μm, and 3.52 μm, respectively. The calculated
results show that the CMA-ES based aberration correction
method has improved the z-axis resolution of the MPM. In
the iteration curve in Fig. 4(c), it can be seen that both the
CMA-ES and the GA complete convergence at 20 iterations.
Both the CMA-ES and the GA converge at 20 iterations.
However, the CMA-ES converges to a more optimal solution
compared to the GA, which means that the CMA-ES has higher
convergence accuracy in this case. The results above are in agree-
ment with our numerical simulation, further verifying the effec-
tiveness of the method.

3.3. Brain slice aberration correction

It is well known that the aberrations in biological tissues are
more complex than those in a microscope[18]. To further test
our approach, we performed aberration correction on the brain
slice during THG imaging. We first acquired uncorrected THG
images of brain slices and then acquired THG images after the
GA and the CMA-ES optimization. The entire imaging process
is similar to Ref. [8]. The optimization method is the same as the
system aberration correction method. As the results shown in
Fig. 5(a), we can see that after correction by both the GA and
the CMA-ES, both the image resolution and the THG signal
are obviously improved. As a quantitative comparison, Fig. 5(b)
shows the line profiles of THG signals plotted along the lines at
the same imaging position in Fig. 5(a). After the GA correction
of the underlined part, the THG signal is improved by 60%, and
after the CMA-ES correction, the THG signal is improved by
95%. This can also be seen in the iteration curve in Fig. 5(c).
The GA converges to a local optimum after about 15 iterations,
while the CMA-ES can converge to a more optimal solution.
This shows that even in the case of complex aberrations intro-
duced by biological tissue, the CMA-ES still performs better
than the GA.

4. Conclusion

In MPM, indirect AO has become a versatile method to over-
come the aberrations caused by deep tissue[18]. Different algo-
rithms have been developed for indirect AO, and efforts
toward this target have constantly been made. Here, we pro-
posed and demonstrated the application of a new algorithm,
the CMA-ES, for indirect AO and compare its performance
to another popular algorithm, the GA. Both our numerical sim-
ulation and experimental results show that the CMA-ES has
faster convergence speed and higher convergence accuracy than
the GA in terms of aberration correction, which has potential in
fast biological tissue aberration correction. Our technology also
shows an analogy between the black-box optimization problem
and indirect AO, which means algorithms commonly used for

black-box optimization can be applied to indirect AO. In the
future, we may apply this technology to in vivo imaging.
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